skip to main content


Search for: All records

Creators/Authors contains: "Huang, Jier"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This Energy Focus article summarizes the topics presented at the Nanomaterials and Sustainability Workshop held on May 4th, 2023 as part of the annual Advanced Photon Source/Center for Nanoscale Materials Users Meeting. Nanomaterials with novel properties and phenomena offer tremendous opportunities for sustainable technologies that address critical environmental and energy applications. The large variation that is possible for nanomaterials across composition, dimension, size and geometry aids in the range of properties and applications that can conceivably be addressed. However, in order to have maximum impact, earth abundance of materials must be considered and scalable manufacturing technologies must be developed. The opportunities discussed at the workshop are organized into topical areas of Nanostructured Materials for Sustainable Energy Solutions; Nano-bio Hybrid Materials for Energy and CO2 Reduction; and Sustainable Manufacturing at the Nanoscale. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available May 24, 2024
  3. Abstract

    Electrochemical reduction of carbon dioxide (CO2RR) to value‐added products is a promising strategy to alleviate the greenhouse gas effect. Molecular catalysts, such as cobalt (II) phthalocyanine (CoPc), are known to be efficient electrocatalysts that are capable of converting CO2into carbon monoxide (CO). Herein, we report an axial modification strategy to enhance CoPc's CO2RR performance. After coordinating with axial ligands, the electron density of Co was depleted via π‐backbonding. This π‐backbonding weakened the Co‐CO bond, resulting in rapid desorption of CO. Also, the presence axial ligands elevated the Co dz2orbital energy, resulting in a significantly enhanced CO selectivity, evidenced by an increased faradaic efficiency (FE) from 82 % (CoPc) to 91 % and 94 % with the presence of pyridine (CoPc‐py) and imidizal ligands (CoPc‐im), respectively, at −0.82 V vs. RHE. Density functional theory calculations reveal that axial ligation of CoPc can reduce the energy barrier for CO2activation and facilitate the formation of*COOH.

     
    more » « less